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We study the magnetization for the classical antiferromagnetic Ising model on the Shastry-Sutherland lattice
using the tensor renormalization-group approach. With this method, one can probe large spin systems with little
finite-size effect. For a range of temperature and coupling constant, a single magnetization plateau at one third
of the saturation value is found. We investigate the dependence of the plateau width on temperature and on the
strength of magnetic frustration. Furthermore, the spin configuration of the plateau state at zero temperature is
determined.
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I. INTRODUCTION

The frustrated spin systems have attracted much attention
over last decades since very rich physics can appear in these
systems.1 Some interest in such systems is concentrated on
fascinating sequence of magnetization plateaus at fractional
values of the saturation magnetization, which was first ob-
served in two-dimensional spin-gap material SrCu2�BO3�2.2

This compound can be described well by spin-1/2 antiferro-
magnetic Heisenberg model on the frustrated Shastry-
Sutherland lattice �or the orthogonal-dimer lattice�,3 as
shown in Fig. 1. Besides the previously discovered plateaus
at 1/3, 1/4, and 1/8 of the saturated magnetization, evidence
in favor of more fractional magnetization plateaus down to
values as small as 1/9 has been reported recently.4–6 Stimu-
lated by the discovery of magnetization plateaus, various the-
oretical and experimental explorations have been devoted to
the properties of the Shastry-Sutherland model in a magnetic
field.7–10

Similar phenomena of magnetization plateaus are also ob-
served in rare-earth tetraborides RB4. The magnetic ions of
these compounds are again located on a lattice that is topo-
logically equivalent to the Shastry-Sutherland lattice.11–17 In
particular, magnetization plateaus at small fractional values
�1/7, 1/9, … of the saturation magnetization� are reported in
the compound TmB4.16,17 Because fully polarized state can
be reached for experimentally accessible magnetic fields, this
compound allows exploration of its complete magnetization
process. Note that, due to large total magnetic moments of
the magnetic ions, this compound can be considered as a
classical system. Moreover, because of strong crystal-field
effects, the effective spin model for TmB4 has been sug-
gested to be described by the spin-1/2 Shastry-Sutherland
model under strong Ising �or easy-axis� anisotropy.17 Thus,
studying the Ising limit is the first step toward a complete
understanding of the magnetization process for this material.

In the presence of a finite magnetic field h, the total en-
ergy of the antiferromagnetic Ising model on the Shastry-
Sutherland lattice is given by

E��si�� = J�
�i,j�

sisj + J� �
��i,j��

sisj − h�
i

si, �1�

with exchange couplings J, J��0. Here, si= �1 /2 denotes
the z component of a spin-1/2 degree of freedom on site i of
the square lattice. The first sum extends over all nearest-
neighbor bonds, and the second sum runs over next-nearest-
neighbor bonds in every second square, as indicated in Fig.
1. Even for this simplified case, different conclusions for the
magnetization curve have been reached. In Ref. 17, a single
plateau at 1/2 of the saturation magnetization is found based
on analyzing a finite system with 16 spins only. However,
when larger system sizes up to 18�18 spins are considered,
a distinct plateau at 1/3 of the saturation magnetization is
obtained.18 The discrepancy may come from the effect of
finite lattice sizes. As noted by Meng and Wessel,18 for finite
systems, inappropriate lattice sizes and boundary conditions
can frustrate certain magnetization patterns and hence lead to
rather different magnetization curves which do not correctly

J

J′

FIG. 1. The Shastry-Sutherland lattice. J bonds �dashed lines�
are the exchange couplings along the edges of the squares and J�
bonds �solid lines� are the diagonal intradimer couplings.
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represent the behavior in the thermodynamic limit. For ex-
ample, the plateau at 1/3 of the saturation magnetization is
not allowed for systems of 4�4 and 8�8 spins, even
though it does describe the true magnetization process for
systems in the thermodynamic limit.

In order to check theoretically if other reported magneti-
zation plateaus at small fractional values can be stabilized in
the current model, unbiased large-scale calculations are
called for. This is because the unit cells of magnetization
profiles inside high-commensurability plateaus are usually
quite large, calculations for systems of finite sizes may pre-
vent reliable predictions for these cases. Therefore, to avoid
the frustration for certain magnetization plateaus coming
from geometric constraints, and in particular to uncover the
possibility of plateaus at small fractional values, analyzing
systems of large enough sizes are necessary.

Lately, based on ideas from quantum information theory,
the tensor renormalization-group �TRG� method is
developed,19 which can efficiently calculate quantities of
classical systems of very large sizes. This technique can in
principle be applied to any classical lattice with local inter-
actions as long as the partition function can be expressed as
a tensor network.20 Because the accuracy can be systemati-
cally improved by increasing the cutoff on the index range of
the tensors, highly precise quantities can be calculated under
the TRG approach even in the thermodynamic limit.19,21,22

Therefore, the TRG method is one of the most suitable ways
to study the magnetization process of the classical frustrated
spin systems in the thermodynamical limit.

In the present work, the magnetization process of the
spin-1/2 Shastry-Sutherland model in the Ising limit is inves-
tigated by employing the TRG approach.19,21,22 We find that
the magnetization curve exhibits exactly one plateau at 1/3 of
the saturation value. Our results are in accordance with the
findings in Ref. 18. Furthermore, phase diagrams in the
�h ,T� plane for a typical magnetic coupling ratio J� /J=1 and
in the �h ,J�� plane for a particular temperature T /J=0.2 are
obtained. Since there is no evidence for the presence of any
additional plateaus for the spin-1/2 Shastry-Sutherland
model in the Ising limit, to explain the experimental results,
one must go beyond this simple model.

This paper is organized as follows. In Sec. II, the TRG
approach is outlined briefly. In Sec. III, we apply this method
to investigate the magnetization process of the Shastry-
Sutherland model in the Ising limit. The spin configuration of
the plateau state at zero temperature is discussed in Sec. IV.
Section V is the conclusion.

II. TRG FORMULATION

Before applying the TRG method of Levin and Nave,19

we first explain how to express the partition function of the
present model as a tensor network. One possible way is to
rewrite the total energy in Eq. �1� as a summation over the
energies of plaquettes with diagonal bonds.23 The energy of,
say, the plaquette A with spins s1 ,s2 ,s3 ,s4 on its corners is
given by �see Fig. 2�

�A�s1,s2,s3,s4� = J�s1s2 + s2s3 + s3s4 + s4s1� + J�s2s4

−
h

2
�s1 + s2 + s3 + s4� . �2�

The rank-four tensors are defined as the Boltzmann weights
for these plaquettes. For example,

T�1,�2,�3,�4

A = exp�− ��A�s1,s2,s3,s4�	 �3�

with � being the inverse temperature and the indices �i
si
+3 /2 running over 1 and 2. Afterward, the partition function
can be rewritten as a sum of tensor products in the following
way:

Z = �
�si�

e−�E��si�� = tTr�TATB
¯� . �4�

Here the tensor trace �tTr� means that all indices on the con-
nected links in the tensor products are summed over. As a
result, the partition function of the Ising model on the
Shastry-Sutherland lattice is transformed to a tensor network
as shown on the right-hand side of Fig. 2.

As discussed in Refs. 19, 21, and 22, the tensor network
can be coarse grained in an iterative fashion to reduce the
load of computation. At the mean time, the accuracy can be
controlled by a parameter of cutoff Dcut. Here we outline the
process briefly. Each step of the renormalization consists of

T
A

T
B

s
1

s
2

s
3

s
4

FIG. 2. �Color online� Checkerboard decomposition of the
Shastry-Sutherland lattice and the corresponding tensor network.
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two operations: rewiring and decimation. After one step of
the renormalization, the number of sites in the tensor net-
work is reduced by half. Eventually, the system is reduced to
only four sites �four T’s� and the partition function can be
calculated with ease.

Rewiring. By viewing the rank-four tensor as a matrix,
say M��2,�3�,��4,�1�=T�1,�2,�3,�4

A , and with the help of singular
value decomposition �SVD�, M =U�V†, the rank-four tensor
can be decomposed to two rank-three tensors. That is �see
Fig. 3�a�	,

T�1,�2,�3,�4

A = �
	=1

D2

S��2,�3�,	
4 S��4,�1�,	

2 ,

T�1,�2,�3,�4

B = �
	=1

D2

S��1,�2�,	
3 S��3,�4�,	

1 . �5�

Here S��2,�3�,	
4 =�
	U��2,�3�,	, S��4,�1�,	

2 =�
	V	,��4,�1�
† �simi-

larly for S3 and S1�, in which 
	 are the singular values and
U, V are the unitary matrices in SVD. If each index of the
original rank-four tensor has D possible values, then there
should be D2 terms in the summation of Eq. �5�. In practice,
the tensor is approximated by keeping only the largest Dcut
singular values and the corresponding singular vectors. Ap-
parently, the cutoff needs to be chosen such that the result
converges with little Dcut dependence.

Decimation. After rewiring, the dashed lines in Fig. 3�a�
can be closed to build another rank-four tensor, T� �see Fig.

3�b�	. This is achieved by the following operation:

T	1,	2,	3,	4
� = Tr�S	2

4 S	1

3 S	4

2 S	3

1 � , �6�

where the square matrices �S	
k��,��
S��,���,	

k . After such a
contraction, one obtains another tensor network that is half
of the size �see Fig. 4�. Afterward, the renormalization can be
carried out iteratively until there are only four sites left.

We note that, to prevent the computation from diverging,
one needs to normalize the rank-four tensor at each step of
the renormalization. At the beginning, we factor out the
maximal value W0 of the tensor elements of TA/B
T0

A/B to

obtain a normalized tensor T̃0
A/B. After the first step of the

renormalization-group �RG� transformation on T̃0
A/B, a renor-

malized tensor T�
T1 is reached. Now we choose the nor-

malization factor to be W1=
max
A 
max

B such that T1=W1T̃1,
where 
max

A and 
max
B are the largest singular values of the

two decompositions in Eq. �5�.
The factorization and RG transformation are then iterated,

so that at the nth step we have a tensor Tn=WnT̃n. Thus, for
the Shastry-Sutherland lattice of N=2n+3 sites �and with N /2
tensors in the original tensor network�, after n steps of the
RG transformation, one has

Z = tTr�T0
AT0

B
¯ T0

B� = W0
N/2W1

N/4
¯ Wn

N/2n+1
tTr�T̃n

AT̃n
BT̃n

AT̃n
B� .

�7�

Since the last tensor-trace term in Eq. �7� remains finite, its
contribution to the free energy can be neglected for a large
enough system. The free energy per site thus becomes

f = −
1

�

ln Z

N
� −

1

�
�
i=0

n
1

2i+1 ln Wi. �8�

Once the free energy is obtained, one can proceed to calcu-
late the magnetization. The results are shown and discussed
in Secs. III and IV.

III. NUMERICAL RESULTS

In this section, we present the numerical results on the
magnetization plateau and related phase diagrams. Through-
out the region being explored, we find only one magnetiza-
tion plateau at m /ms=1 /3, where m denotes the magnetiza-
tion and ms its saturation value. Unless otherwise mentioned,
the size of the system is 210�210 with periodic boundary
condition. That is, the number of steps of the RG transfor-
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FIG. 3. �Color online� �a� Rewiring: the original rank-four ten-
sors are decomposed to two rank-three tensors. �b� Decimation: the
tensor T� is obtained by summing over the indices around the
square.
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FIG. 4. Under the TRG procedure, a tensor network is trans-
formed into a coarse-grained tensor network.
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mation in Eqs. �7� and �8� is n=17. The temperature T and
the strength of magnetic frustration J� are measured in units
of J.

Figure 5 is a typical diagram of the magnetization curves
for J�=1. The curves for three temperatures �T=0.05, 0.1,
and 0.15� are shown. The size of the system is 210�210 and
the cutoff Dcut=18. Current result converges well against fur-
ther increase in the system size and the cutoff. For example,
for T=0.05, a larger system with 215�215 �Dcut=18� yields a
result that agrees to the sixth decimal place for the most part
of the curve. A larger cutoff Dcut=24 �system size of 210

�210� shows similar accuracy. The result is slightly less ac-

curate near the edges of the magnetization plateau but still
shows no visible difference from the T=0.05 curve in Fig. 5.
Compared to other methods, the TRG method is both accu-
rate and efficient for very large systems.

A more complete scan of the temperature can be found in
Fig. 6�a�. Over the whole range of calculation, there is only
one plateau at m /ms=1 /3. Its width gradually shrinks to zero
near temperature T=0.18. The corresponding phase diagram
for the 1/3 plateau is shown in Fig. 6�b�. The extent of the
plateau is determined by the locations of maximum slope
near its edges, which will be denoted as hc,1 and hc,2 for the
lower and the higher critical fields, respectively. In Fig. 6�b�,
we have added the theoretical critical fields �hc,1 ,hc,2�
= �1,5 /2� at zero temperature �details later�. One can see that
the numerical result does extrapolate to the theoretical values
as temperature decreases.

In Fig. 7�a�, we show another scan of the magnetization
with respect to J� and h at T=0.2. At this temperature, there
is no plateau for small frustration. The plateau appears when
J� is slightly larger than 1. One can see that the widths of the
plateaus remain roughly the same for J��2. Their positions
appear to shift linearly with respect to the strength of the
frustration J�. One can see this clearly in the phase diagram
of Fig. 7�b�. The plateaus are again determined by the loca-
tions of maximum slope. The characters of this phase dia-
gram at finite temperature are inherited from its counterpart
at zero temperature �details later�, which is also plotted in
Fig. 7�b� for comparison. The plateaus at zero temperature
indeed exhibit a constant width at large frustration and a
linear shift of the plateau position. Such a behavior will be
explained in Sec. IV.
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FIG. 6. �a� Magnetization versus temperature T and magnetic
field h. The parameters are J�=1 and Dcut=18. �b� Phase diagram of
the magnetization plateau. The theoretical values of the critical
fields at zero temperature are denoted by filled circles.

(a)

0
1

2
3

4
5J’ 0

1
2

3
4

5
6

h

0
0.2
0.4
0.6
0.8

1

m/ms

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5

h

J’

(b)

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5

h

J’

(b)

FIG. 7. �a� Magnetization versus frustration J� and magnetic
field h. The parameters are T=0.2 and Dcut=18. �b� Phase diagram
of the magnetization plateau. Dashed lines are the theoretical phase
boundaries at zero temperature.
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FIG. 5. Magnetization curves for three different temperatures.
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IV. MAGNETIZATION PLATEAU AT ZERO
TEMPERATURE

When the temperature is zero, the system is in the ground
state. If the spin configuration of the ground state is known,
then the Ising energy of the system can be calculated analyti-
cally. Afterward, by comparing the ground-state energies at
different parameters, one can determine the phase boundaries
in the parameter space. In this section, we will consider three
regimes of magnetization: the unmagnetized state �m=0�, the
state of the 1/3 plateau, and the fully magnetized state
�m /ms=1�. It will be shown that the phase boundaries being
determined are consistent with the numerical results reported
in Sec. III.

In the unmagnetized state with m=0, we assume that the
system is either in the Néel state or in the collinear state,
depending on the strength of the frustration J�. These states
should be stable when the applied field h is small. When the
system is in the Néel state �Fig. 8�a�	, for a unit cell formed
by four plaquettes �bounded by dashed-dotted lines�, there
are two sites with spin up and two sites with spin down. The
nearest-neighbor spins are all antiparallel but the spins con-
nected by the J� bond are parallel. It is not difficult to see
that the energy per site, including the Zeeman energy �zero
here�, is

�m=0 = −
1

2
+

J�

8
, �9�

in which J=1.
For large frustration, the system is more likely to be in the

collinear state �Fig. 8�b�	. Again there are two up spins and
two down spins in a unit cell of four plaquettes. Now the
energy per site becomes

�̃m=0 = −
J�

8
. �10�

By comparing the energies in Eqs. �9� and �10�, one can see
that the energy of the Néel state is lower �higher� than the
collinear state when J��2 �J��2�.

When the applied field increases, the system can undergo
a phase transition to a 1/3-plateau state. There are several
possible candidates for such a state. In Fig. 8�c�, we show the
spin configuration of a state with the lowest possible energy.
With careful analysis, one obtains the following spin energy
per site,

�m/ms=1/3 = −
1

6
−

J�

24
−

h

6
. �11�

When the applied field is sufficiently strong, then, irre-
spective of the value of J�, the system should be fully mag-
netized. In such a case, it is relatively easy to determine the
spin energy per site,

�m/ms=1 =
1

2
+

J�

8
−

h

2
. �12�

By comparing �m=0 and �m/ms=1/3, one can determine the
boundary between the Néel state and the plateau state when
J��2. The lower critical field hc,1 is found to be

hc,1 = 2 − J�. �13�

Similarly, by comparing �̃m=0 and �m/ms=1/3, one has the
boundary between the collinear state and the plateau state
when J��2,

h̃c,1 = − 1 +
J�

2
. �14�

These two straight lines are indicated as the lower phase
boundaries at zero temperature in Fig. 7�b�.

On the other hand, the upper critical field hc,2 is obtained
by comparing the energies of the plateau state ��m/ms=1/3� and
the fully magnetized state ��m/ms=1�,

hc,2 = 2 +
J�

2
. �15�

Such a straight line is also shown in Fig. 7�b�. The area
bounded by these critical magnetic fields should be the maxi-
mum width of the plateau when the temperature of the sys-
tem drops to zero. For example, when J�=1, the plateau is
bounded by �hc,1 ,hc,2�= �1,5 /2� at T=0. This agrees nicely
with the extrapolation in Fig. 6�b�.

V. CONCLUSION

The TRG method is applied to explore the plateau in the
magnetization process for the classical Ising model on the
Shastry-Sutherland lattice. Systems as large as 210�210 sites
can be routinely studied with relative ease. Therefore, the
complications from the finite-size effect and its related

(a)

=
=

(b)

(c)

FIG. 8. �Color online� �a� Spin configuration for the Néel state.
Solid and empty circles represent spin-up and spin-down states,
respectively. �b� Spin configuration for the collinear state. �c� Spin
configuration for the magnetization plateau at m /ms=1 /3. The large
squares with dashed-dotted lines indicate possible choices of unit
cells.
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geometric frustration can essentially be avoided. We found a
single plateau at m /ms=1 /3 that is robust over certain ranges
of temperature and magnetic frustration, consistent with the
result in Ref. 18 for smaller systems and higher tempera-
tures. The model under investigation is relevant to the com-
pound TmB4,17 which is found to have a sequence of pla-
teaus down to small fractional values.16,17 We note that the
antiferromagnetic transverse exchanges have not been taken
into account in the current classical model. Therefore, the

quantum effect caused by these couplings may be essential in
a full explanation of the observed plateaus.
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